Les mathématiques sont nées d'une volonté de compréhension de l'espace ambiant : la géométrie naît de la modélisation de formes idéalisées, et l'arithmétique des besoins des gestions des quantités. Astronomie et géométrie se sont longtemps confondues, jusque dans les civilisations islamiques. Les mathématiques et la physique, après s'être différenciées, ont gardé d'étroits liens. Dans l'histoire contemporaine de ces deux sciences, les mathématiques et la physique se sont influencées mutuellement. La physique moderne use à outrance des mathématiques, en faisant une modélisation systématique pour comprendre les résultats de ses expériences :
Cette modélisation peut faire appel à des outils mathématiques déjà développés. Ainsi l'usage des métriques en géométrie différentielle est un outil essentiel sur lequel repose notamment la relativité générale, développée par le mathématicien Minkowski puis par le physicien Einstein. Cet usage est aussi utilisé dans les autres théories post-newtoniennes.
Cette modélisation encourage les mathématiciens à s'intéresser davantage à telle ou telle structure mathématique pour les besoins de la physique.
Cette modélisation demande parfois au contraire des outils mathématiques non encore développés et ouvre des nouvelles perspectives mathématiques. Ainsi, Isaac Newton a-t-il développé le calcul différentiel pour pouvoir écrire les lois (classiques) du mouvement ; s'intéressant à la diffusion de la chaleur dans les corps, Joseph Fourier découvre les séries qui portent son nom, porte ouverte sur la théorie de Fourier ; ... Plus récemment, citons les problèmes de quantification géométrique, d'intégrales de Feynman, de polynômes de Donaldson...
Un domaine de recherche spécifique, la physique mathématique, tend précisément à développer les méthodes mathématiques mises à l'usage de la physique.
Le lien étroit entre mathématiques et physique se reflète dans l'enseignement supérieur des mathématiques. L'enseignement de la physique fait appel à des cours de mathématiques pour physiciens ; et il n'est pas rare que les cursus de mathématiques dans les universités incluent une initiation facultative à la physique.
Cette modélisation peut faire appel à des outils mathématiques déjà développés. Ainsi l'usage des métriques en géométrie différentielle est un outil essentiel sur lequel repose notamment la relativité générale, développée par le mathématicien Minkowski puis par le physicien Einstein. Cet usage est aussi utilisé dans les autres théories post-newtoniennes.
Cette modélisation encourage les mathématiciens à s'intéresser davantage à telle ou telle structure mathématique pour les besoins de la physique.
Cette modélisation demande parfois au contraire des outils mathématiques non encore développés et ouvre des nouvelles perspectives mathématiques. Ainsi, Isaac Newton a-t-il développé le calcul différentiel pour pouvoir écrire les lois (classiques) du mouvement ; s'intéressant à la diffusion de la chaleur dans les corps, Joseph Fourier découvre les séries qui portent son nom, porte ouverte sur la théorie de Fourier ; ... Plus récemment, citons les problèmes de quantification géométrique, d'intégrales de Feynman, de polynômes de Donaldson...
Un domaine de recherche spécifique, la physique mathématique, tend précisément à développer les méthodes mathématiques mises à l'usage de la physique.
Le lien étroit entre mathématiques et physique se reflète dans l'enseignement supérieur des mathématiques. L'enseignement de la physique fait appel à des cours de mathématiques pour physiciens ; et il n'est pas rare que les cursus de mathématiques dans les universités incluent une initiation facultative à la physique.