tv football2 football2 football2 football2 football2 football2 football2 football2
football2

11/08/2009

Historique du mathématiques

Il est fort probable que l'homme ait développé des compétences mathématiques avant l'apparition de l'écriture. Le premier objet reconnu attestant de compétences calculatoires est l'os d'Ishango datant de 20 000 ans avant notre ère[Le développement des mathématiques en tant que connaissance transmise dans les premières civilisations est lié à leurs applications concrètes : le commerce, la gestion des récoltes, la mesure des surfaces, la prédiction des événements astronomiques, et parfois l'exécution de rituels religieux.

Les premiers développements mathématiques concernaient l'extraction des racines carrées, des racines cubiques, la résolution d'équations polynomiales, la trigonométrie, le calcul fractionnaire, l'arithmétique des entiers naturels... Ils s'effectuèrent dans les civilisations akkadiennes, babyloniennes, égyptiennes, chinoises ou encore de la vallée de l'Indus.

Dans la civilisation grecque, les mathématiques, influencées par les travaux antérieurs et les spéculations philosophiques, recherchent davantage d'abstraction. Les notions de démonstration et de définition axiomatique sont précisées. Deux branches se distinguent, l'arithmétique et la géométrie. Au IIIe siècle av. J.-C., les Éléments d'Euclide[8] résument et ordonnent les connaissances mathématiques de la Grèce.
La civilisation islamique a permis la conservation de l'héritage grec et l'interfécondation avec les découvertes chinoises et indiennes, notamment en matière de représentation des nombres[réf. nécessaire]. Les travaux mathématiques sont considérablement développés tant en trigonométrie (introduction des fonctions trigonométriques) qu'en arithmétique. L'analyse combinatoire, l'analyse numérique et l'algèbre polynomiale sont inventées et développées.

Durant la Renaissance européenne, une partie des textes arabes sont étudiés et traduits en latin. La recherche mathématique se concentre en Europe. Le calcul algébrique se développe suite aux travaux de Viète et Descartes. Newton et Leibniz, indépendamment, inventent le calcul infinitésimal
Au cours du XVIIIe siècle et du XIXe siècle, les mathématiques connaissent de forts développements avec l'étude systématique des structures, à commencer par les groupes issus des travaux de Galois sur les équations polynomiales, et les anneaux introduits par Dedekind.

Le XIXe siècle voit avec Hilbert et Cantor le développement d'une théorie axiomatique sur tous les objets étudiés, soit la recherche des fondements mathématiques[réf. nécessaire]. Ce développement de l'axiomatique conduira plusieurs mathématiciens du XXe siècle à chercher à définir toutes les mathématiques à l'aide d'un langage : la logique.

Le XXe siècle a connu un fort développement en mathématiques avec une spécialisation des domaines, et la naissance ou le développement de nombreuses nouvelles branches (théorie de la mesure, théorie spectrale, topologie algébrique et géométrie algébrique, par exemple). L'informatique a eu un impact sur la recherche. D'une part, elle a facilité la communication et le partage des connaissances, d'autre part, elle a fourni un formidable outil pour la confrontation aux exemples. Ce mouvement a naturellement conduit à la modélisation et à la numérisation.

Domaines des mathématiques :
Un découpage des mathématiques en deux, trois ou quatre domaines différents est couramment utilisé[réf. nécessaire]: algèbre et analyse, ou bien algèbre, analyse et géométrie, ou bien algèbre, analyse, géométrie et probabilités. De tels découpages ne sont pas évidents et les frontières les séparant sont toujours mal définies. En effet, de nombreux résultats font appel à des compétences mathématiques variées. Le théorème de Wiles, établi en 1994, en est un exemple. Bien que formulé de manière dite arithmétique, la preuve nécessite de profondes compétences en analyse et en géométrie